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It is shown that Euler’s equations and the natural boundary conditions of the variational 

problem of the stationary state of complementary wurk are the equations of continuity 
written in components of the Piola stress tensor and the boundary conditions on that part 
of the surface where the displacements are given. 

The complementary work is regarded as a functional of the Piola stress tensor. The 
static equations for the Piola stress tensor are written in the metric of the initial (unde- 

formed) state. This approach permits the separation of the static and the geometrical 
sides of the problem of equilibrium of an elastic body. For an isotropic elastic medium 

a method is shown for the expression of complementary work through the components of 
the Piola tensor. The basic notation with respect to nonlinear theory of elasticity is taken 

from Cl]. 
The variation of specific potential strain energy for an ideal elastic body is n] 

Here Q is the stress energy tensor p], G* is Cauchy’s measure of strain, R is the radius 
vector of a point of the deformed body, V is the nabla operator in the metric of the 
undeformed state, I,(P) is the first invariant of the tensor P, and G / g is the third 

invariant of the tensor G*. 
We take advantage of the following equations : 

fG/gQ = D.(VR)-l, 6G” = VR . V6RT + V6R. VRT 

where D is the Piola stress tensor p], and express (1) in the form 

6W = l/all{D.(VR)-‘.VR .SVR=, f l/s [D.(VR)-‘1. .[V6R.VRT] 

Since tensor D. (VR) -1 is symmeaic, we have 

[D.(VR)-1]+‘6R.VRT] = [D.(VR)-11. .[V6R.VRT]T= 

= [D.(VR)-+[VRd’GRT] =I1 {D.(VR)-1.VR.V6R1} 

In this manner we obtain instead of (1) 

6W = D..VGRT (2) 

If we write VR = C and consider W as a function of components of tensor C, then 
it follows from (2) that a,, = awlafT" 

Here d,l, and csk are components of tensors D and C with some basis. 
We bring into consideration the specific complementary strain work as a function of 

components of tensor D . This function is related to W through the Legendre transfor- 
mation B = D..CT -W (3) 
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According to the property of Legendre transformation p] 

&RzC=.JjD=VR=..~D 

Let the elastic body in its undeformed state occupy the volume u bounded by the sur- 
face 0 = 01 + oz ; the external surface forces are given on ol, while the displace- 
ments are given on 0s . 

It is known from @.I that equilibrium equations in the volume and on the surface of 
an elastic body can be written in the form 

v*D+p,K=O in U, n.D==F’ on o1 (4) 

Here pa is the density of the medium in the undeformed state, K is the mass force 
vector, n is the normal to the surface of the undeformed body, F” is the vector of exter- 

nal surface forces per unit area of the undeformed body. 

The arbitrary tensor ,D which satisfies conditions (4) will be called statically possible. 
Let us examine the following functional of statically possible tensors D which is 

referred to as complementary work: 

b~~~Bd~--~R.F~do (5) 
u 02 

Here F” should be treated as the reaction to adjustments which ensure the equality of 
the displacement vector on 02 to its prescribed value. 

Further, referring to (2) and taking into account that on o9 vector Rdoes not VaI’y, we . 
obtain 

80= 
sss 

VR=..8Ddz- R.6F”do 
ss (6) 

Assuming that vector R is c&inuously differentizble, we integrate (6) by parts with 

the aid of the following identity : 

PT.nVa=V.(P.a)-(V.P).a 

We arrive at the equation 

(7) 

o@ = -&v.~D).R~T + SS~,~D.R~O+SS~~D.R~~ -_~RdFod0 =o 
‘v 01 or or 

because according to (4) 

V*6D=O inv, n.bD = 0 on ol, n-&D = 6F” on oa (8) 

In this manner the stationary state of complementary work follows from the continu- 

ity of the medium. 

Now we shall show the inverse: the continuity equations 

VXC=O inn 

and the boundary conditions on os turn out to be Euler’s equations and the natural bound- 
ary conditions of the variational problem of the stationary state of complementary work. 

Since variations 8D must satisfy the condition (8). we introduce (*) the Lagrangian 

vector X 
~~=SSS[CT..~D+a.(V.8Dj]d7--SSR.dFodo 

2) 02 
Now through the appropriate choice of vector 1 we can consider the variations of 

* ) This method of proof was recommended to the author by Lur’e. 
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components of tensor D as independent; Further, referring to (7) we have 

(V.SD)A = V.(SD.l) - 6D. l VAT 

The variational equation assumes the form 

60= (CT 
css 

-VAT). .6Ddz j-&h- R)dF"do = 0 
" 02 

From the arbitrariness of the variation 6D in the volume and on o2 we obtain that the 

tensor C must be equal to the gradient of some vector; this is equivalent to the equation 

v xc=0 (9) 

This vector itself computed from the tensor C is equal to the given vector R on the 
surface oz. Since the tensor C, here is assumed to be expressed in terms of the tensor 

0, Eq. (9) is the condition of continuity expressed in terms of the components of the 
Piola stress tensor. 

Now it is necessary to solve the problem of expressing the tensor VR and the com- 

plementary work @ in terms of the Piola stress tensor. For an isotropic elastic medium 
the following method may be proposed. 

Again we take advantage of equation 

D = I/G/~Q.vR 
and form the symmetric tensor 

D.DT = (G/g)Q.G*.Q 

For an isotropic elastic medium the tensors Q and G*are coaxial. Consequently, the 

tensor D. DT is coaxial with the tensor G* and can be represented in the form 

D.DT = aE +bG* +cG*~ (10) 

where a, b and c are functions of the invariants of tensor G*. Relationship (10) can 
be transformed, i.e. we can write 

G* = a,E +b,D.DT +cl (D.DT)2 (11) 

Here a,, b, and c1 are functions of invariants of tensor D . DT. By analogy we can 

write ]/5;7:Q =a,E-j- b2D.DT+cz(D.DT)’ (‘12) 
where a2, b2 and c, are also some functions of invariants of tensor D .‘DT. 

For an isotropic medium the specific potential strain energy is a function of invariants 

of Cauchy’s measure of strain G *.’ From relationship (11) we can express the invariants 

of tensor G* in terms of the invariants of the tensor D. DT . By the same token the 
specific potential strain energy W will be expressed in terms of the components of the 

Piola stress tensor. Furthermore, the quantity 

D..V@+FiQ..G* 

is also e_xpressed in terms of the invariants of tensor Da DTwith the aid of Eqs. (11) and 
(12). In this manner the specific complementary strain work B of an isotropic elastic 
body turns out to be represented as a function of invariants of tensor D. DT, i. e. as a 
final result it is represented as a function of components of the Piola stress tensor. It 

follows from (12) that the tensor l/g / G Q-1 is also an isotropic tensor function of 
tensor D. DT and can be represented in the form 
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Here a,, ba and cs are again functions of invariants of D . DT. Therefore, when the 
tensor D is known, the tensor VR is determined by the relationship 

VR = [a,E + b,D.DT +c, (D.DT) 2l.D 
The radius vector of the deformed body is determined by equation 

R= ‘5’ dr.[a,E+b,D.DT$-cQ(D.DT)2].D+R(Mo) 
w&J 

where the integral can be computed on any curve connecting the points M,, and M. 
Let us perform the outlined computation using the example of a semilinear material 

[1]. For a semilinear material the expression for the specific potential strain energy w 

and the equation of state have the following form: 

W = r/2hs,2 + F.Q = 1/2 D . . (VR* -- AT), A = G*-I/“. VR (13) 

D = [(As, - 2~) G*-” + 2pE]. VR (14) 
s1 - II {G*“‘} - 3, s; -= I, {G”} - ?,I, {G*“‘} + 3 (A, 14 = consq 

According to Eq. (14) we obtain 

hence 
D.DT = [(hs, - 2~) E + 2pG*“‘]2 

2pG*“’ = (D.DT)“’ - (As, - 2~) E, ~1 =f1/(3h f2p), fr = b((D.DT)lh} 
Furthermore, 

[(As, - 2~) G*-“’ + +,E]-’ = G*“’ . (D. DT)+ = 

- 2pj (D.D’)-‘“1 

Now we obtain from (14) 

VR+ E- c ! hfl 
3n+2Cr 

- 2+D.DT)-17’].D W) 

We note that relationship (15) remains essentially nonlinear with respect to tensor’ D 
no matter how small the stresses. 

We compute further 

D..VRT=+[D..DT-(~_22P)fl\, 
3h + 21.L 

D. .AT =f, 

Finally, according to (13) we obtain the expression for the specific complementary 
strain work for the semilinear material in terms of the first invariants of tensors 

(D.DT)‘A and D. DT 

B=1/2D~~VRT+1/2D..ATL=&[D..DT-+-fl~]+fl, x 
V=m) 

Note. The representation of specific complementary strain work in the form of 

(3) appears in monograph [3] with the unessential difference that instead of the radius 
vector R of the deformed body the vector of displacements is used. 

However, in [3] the specific complementary strain work is considered as a function 

of both the Piola stress tensor and the gradients of displacements; the assertion is made 
in this connection that it is impossible to express the complementary work in terms of 

the components of the Piola stress tensor only. 
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If the complementary work is regarded as a functional of both the Piola stress tensor 
and the vector of displacements, the meaning of Castigllano’s principle is lost as a vari- 
ational principle, which selects among all statically possible states of stress those which 

satisfy the conditions of continuity. 

In paper [4] the complementary work is treated as a functional of the Piola stress ten- 

sor only and it is established that continuity equations (9) follow from the stationary 

state of complementary work. Nevertheless, the question about the possibility of express- 
ing the gradients of displacements and the specific complementary strain work in terms 

of components of the Piola stress tensor remains open in paper [4]. 

In fact, as was shown above, the gradients of displacements and the specific comple- 
mentary strain work can be represented as a function of the components of the Piola 

stress tensor only. Therefore the principle of Castigliano which was formulated for the 
Piola stress tensor retains its significance also in the nonlinear theory of elasticity. 

The author is grateful to A. I. Lur’e for his attention to this work. 
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As is known, plane contact problems of the theory of elasticity for a half-plane in the 
presence of adhesion or friction in the contact domain have been studied sufficiently 
well. 

Corresponding contact problems for elastic solids different in shape or their mechani- 
cal properties from an isotropic elastic half-plane, have begun to be worked upon com- 
paratively recently. The papers of Popov fl, 21 should here be singled out first, 

A general analysis of the structure of the solutiolr of nonclassical plane contact prob- 

lems in the presence of adhesion or friction in the contact domain is given herein. Pos- 
sible methods of solving them effectively are indicated. 

1. Mathematical formulation. Some auxiliary rasulta. We call 
the following the nonclassical mixed problems: (1) mixed problems of elasticity theory 
for bodies of complex shape (strip, layer, circle, sphere, infinite cylinder, wedge, etc. ), 


